If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=63
We move all terms to the left:
p^2-(63)=0
a = 1; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·1·(-63)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*1}=\frac{0-6\sqrt{7}}{2} =-\frac{6\sqrt{7}}{2} =-3\sqrt{7} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*1}=\frac{0+6\sqrt{7}}{2} =\frac{6\sqrt{7}}{2} =3\sqrt{7} $
| 3v+8=8+3 | | z+52=2z+37 | | 3x+20+3x=110 | | 3x+20=3x=110 | | 376=h+43 | | -8(3b-7)=-4-2(b+3 | | x^2+18x+100=0 | | -10=p/28 | | (2/3)x-3=(7/3)x-13 | | (8x+8)+(8x-20)=180 | | (8x+8)+(8x+20)=180 | | (2/3)y-3=(7/3)y-13 | | X+11+8x=200 | | 2x-(4x-15)=3 | | 6t+2=4t+26 | | 7x/5x=11 | | 2(u-1)=5u-30 | | 29.4=3x | | 15x+5=10x15 | | 3(x+5)-8x=20 | | 2x=3(2x-4) | | 3^2x^2-5x=27 | | -6x+3(x-7)=-12 | | 90=x+2x | | 8x+8=8x-20 | | 12=-8w+4(w+6) | | 6^x+9=26 | | 3n+4=119 | | 1/5(30x+40)-3=-1/3(15x-9) | | 12=-8w(w+6) | | .75+1000=-2x+1200 | | 16-3(1+4b)=28-8b |